Hoffman Polynomials of Nonnegative Irreducible Matrices and Strongly Connected Digraphs
نویسندگان
چکیده
For a nonnegative n× n matrix A, we find that there is a polynomial f(x) ∈ R[x] such that f(A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show that the lowest degree such polynomial f(x) with tr f(A) = n is unique. Thus, generalizing the well-known definition of the Hoffman polynomial of a strongly connected regular digraph, for any irreducible nonnegative n × n matrix A, we are led to define its Hoffman polynomial to be the polynomial f(x) of minimum degree satisfying that f(A) is positive and has rank 1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and open problems related to the concept of Hoffman polynomials. AMS Classification: 05C50, 15A24.
منابع مشابه
On spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملDirected graphs, 2D state models and characteristic polynomials of irreducible matrix pairs
In the paper the definition and main properties of a 2D-digraph, namely a directed graph with two kinds of arcs, are introduced. Under the assumption of strong connectedness, the analysis of its paths and cycles is performed, basing on an integer matrix whose rows represent the compositions of all circuits, and on the corresponding row-module. Natural constraints on the composition of the paths...
متن کاملOn matrix powers in max-algebra
Let A = (aij ) ∈ Rn×n,N = {1, . . . , n} and DA be the digraph (N, {(i, j); aij > −∞}). The matrix A is called irreducible if DA is strongly connected, and strongly irreducible if every maxalgebraic power of A is irreducible. A is called robust if for every x with at least one finite component, A(k) ⊗ x is an eigenvector of A for some natural number k. We study the eigenvalue–eigenvector proble...
متن کاملStrongly Connected Multivariate Digraphs
Generalizing the idea of viewing a digraph as a model of a linear map, we suggest a multi-variable analogue of a digraph, called a hydra, as a model of a multi-linear map. Walks in digraphs correspond to usual matrix multiplication while walks in hydras correspond to the tensor multiplication introduced by Robert Grone in 1987. By viewing matrix multiplication as a special case of this tensor m...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کامل